Алгебра - математика и искусство

Перейти к контенту

Главное меню:

Алгебра

Алгебра

АЛГЕБРА (араб.)- часть математики, развивающаяся в связи с задачей о решении алгебраических уравнений. Решение уравнений 1-й и 2-й степеней известно еще с древности. В 16 в. итальянскими математиками найдены решения уравнений 3-й и 4-й степеней. К. Гауссом  установлено (1799), что всякое алгебраическое уравнение n-й степени имеет n корней (решений), действительных или мнимых. В начале 19 века Н. Абель и Э. Галуа доказали, что решения уравнений степени выше 4-й, вообще говоря, нельзя выразить через коэффициент уравнения при помощи алгебраических действий.

В современной алгебре изучается общая теория совокупностей, в которых определены алгебраические операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться над многочленами, векторами, матрицами  и т. д.

Только с алгеброй начинается строгое математическое учение.
/
Н.И. Лобачевский/


Алгебра есть  не что иное, как математический язык, приспособленный для обозначения отношений между количествами.
/И.Ньютон/

Алгебра - часть математики, которая изучает общие свойства действий над различными величинами и решение уравнений, связанных с этими действиями.

Решим задачу: «Возрасты трех братьев 30, 20 и 6 лет. Через сколько лет возраст старшего будет равен сумме возрастов обоих младших братьев?» Обозначив искомое число лет через х, составим уравнение: 30 + х = (20  + х) + (6 + х), откуда х = 4. Близкий к описанному метод решения задач был известен еще во II тысячелетии до н.э. писцам Древнего Египта (однако они не применяли буквенной символики). В сохранившихся до наших дней математических папирусах имеются не только задачи, которые приводят к уравнениям первой степени с одним неизвестным, как в задаче о возрасте братьев, но и задачи, приводящие к уравнениям вида ах2 = b.


Еще более сложные задачи умели решать с начала II тысячелетия до н. э. в Древнем Вавилоне: в математических текстах, выполненных клинописью на глиняных пластинках, есть квадратные и биквадратные уравнения, системы уравнений с двумя неизвестными и даже простейшие кубические уравнения. При этом вавилоняне также не использовали букв, а приводили решения «типовых» задач, из которых решения аналогичных задач получались заменой числовых данных. В числовой же форме приводились и некоторые правила тождественных преобразований. Если при решении уравнения надо было извлекать квадратный корень из числа а, не являющегося точным квадратом, находили приближенное значение корня х: делили а на х и брали среднее арифметическое чисел х и а/х.


Первые общие утверждения о тождественных преобразованиях встречаются у древнегреческих математиков, начиная с VI в. до н. э. Среди математиков Древней Греции было принято выражать все алгебраические утверждения в геометрической форме. Вместо сложения чисел говорили о сложении отрезков, произведение двух чисел истолковывали как площадь прямоугольника, а произведение трех чисел  как объем прямоугольного параллелепипеда. Алгебраические формулы принимали вид соотношений между площадями и объемами.


Большинство задач решалось в Древней Греции путем построений циркулем и линейкой. Но не все задачи поддавались такому решению.


Геометрический подход к алгебраическим проблемам сковывал дальнейшее развитие науки, так как, например, нельзя было складывать величины разных размерностей (длины и площади или площади и объемы), нельзя было говорить о произведении более чем трех множителей и т.д. Отказ от геометрической трактовки наметился у Диофанта Александрийского, жившего в III в.  В его книге «Арифметика» появляются зачатки буквенной символики и специальные обозначения для степеней неизвестного вплоть до 6-й. Были у него и обозначения для степеней с отрицательными показателями, обозначения для отрицательных чисел, а также знак равенства (особого знака для сложения еще не было), краткая запись правил умножения положительных и отрицательных чисел. На дальнейшее развитие алгебры сильное влияние оказали разобранные Диофантом задачи, приводящие к сложным системам алгебраических уравнений, в том числе к системам, где число уравнений было меньше числа неизвестных.


С VI в. центр математических исследований перемещается в Индию и Китай, страны Ближнего Востока и Средней Азии. Китайские ученые разработали метод последовательного исключения неизвестных для решения систем линейных уравнений, дали новые методы приближенного ре-шения уравнений высших степеней. Индийские математики использовали отрицательные числа и усовершенствовали буквенную символику. Однако лишь в трудах ученых Ближнего Востока и Средней Азии алгебра оформилась в самостоятельную ветвь математики, трактующую вопросы, связанные с решением уравнений. В IX в. узбекский математик и астроном Мухаммед ал-Хорезми написал трактат «Китаб аль-джебр валь-мука- бала», где дал общие правила для решения уравнений первой степени. Слово «аль-джебр» (восстановление), от которого новая наука ал-гебра получила свое название, означало перенос отрицательных членов уравнения из одной его части в другую с изменением знака. Ученые Востока изучали и решение кубических уравнений, хотя не сумели получить общей формулы для их корней.


В Западной Европе изучение алгебры началось в XIII в. Одним из крупных математиков этого времени был итальянец Леонардо Пизанский (Фибоначчи). Первым крупным самостоятельным достижением западноевропейских ученых было открытие в XVI в. формулы для решения кубического уравнения. Это было заслугой итальянских алгебраистов С. дель Ферро, Н. Тарталья и Дж. Кардано. Ученик последнего - Л. Феррари решил и уравнение 4-й степени. Изучение некоторых вопросов, связанных с корнями кубических уравнений, привело итальянского алгебраиста Р. Бомбелли к открытию комплексных чисел.


Отсутствие удобной и хорошо развитой символики сковывало дальнейшее развитие алгебры: самые сложные формулы приходилось излагать в словесной форме. В конце XVI в. французский математик Ф. Виет ввел буквенные обозначения не только для неизвестных, но и для произвольных постоянных. Символика Виета была усовершенствована многими учеными. Окончательный вид ей придал в начале XVII в. французский философ и математик Р. Декарт, который ввел (употребляемые и поныне) обозначения для показателей степеней.
Декарту удалось освободить алгебру от несвойственной ей геометрической формы.

Все это позволило рассматривать вопросы решения уравнений в самом общем виде, применять уравнения к решению геометрических задач. Например, задача об отыскании точки пересечения двух линий свелась к решению системы уравнений, которым удовлетворяли точки этих линий.

Особенно далеко было продвинуто в XVIII в. решение систем линейных уравнений - для них были получены формулы, позволяющие выразить решения через коэффициенты и свободные члены.

В начале XIX в. были решены основные задачи, стоявшие перед алгеброй в первом тысячелетии ее развития. Она получила самостоятельное обоснование, не опирающееся на геометрические понятия, и, более того, алгебраические методы стали применяться для решения геометрических задач. Были разработаны правила буквенного исчисления для рациональных и иррациональных выражений, выяснен вопрос о разрешимости уравнений в радикалах и построена строгая теория комплексных чисел.


С операциями, свойства которых лишь отчасти напоминают свойства арифметических операций, математики XIX в. столкнулись и в других вопросах. В 1858 г. английский математик А. Кэли ввел общую операцию умножения матриц и изучил ее свойства. Оказалось, что к умножению матриц сводятся и многие изучавшиеся ранее операции. Английский логик Дж. Буль в середине XIX в. начал изучать операции над высказываниями, позволявшие из двух данных высказываний, построить третье, а в конце XIX в. немецкий математик Г. Кантор ввел операции над множествами: объединение, пересечение и т.д.


Таким образом, в течение XIX в. в математике возникли разные виды алгебр: обычных чисел, комплексных чисел, кватернионов, матриц, высказываний, множеств и т.д. Иными словами, алгебра стала рассматриваться как общая наука о свойствах законов композиции, свойствах операций.


Исследование операции умножения матриц привело к выделению понятия группы, которое является сейчас одним из важнейших не только в алгебре, но и во всей математике.
В наши дни алгебра - одна из важнейших частей математики, находящая приложения как в сугубо теоретических отраслях науки, так и во многих практических вопросах.

Энциклопедический  словарь юного математика, 1989


 
Copyright 2016. All rights reserved.
Назад к содержимому | Назад к главному меню