Гаусс - математика и искусство

Перейти к контенту

Главное меню:

Гаусс

Биографии > Биографии математиков

ГАУСС  Карл Фридрих (1777-1855), немецкий математик, иностранный член-корреспондент (1802) и иностранный почетный член (1824) Петербургской АН. Для творчества Гаусса характерна органическая связь между теоретической и прикладной математикой, широта проблематики. Труды Гаусса оказали большое влияние на развитие алгебры (доказательство основной теоремы алгебры), теории чисел (квадратичные вычеты), дифференциальной геометрии (внутренняя геометрия поверхностей), математической физики (принцип Гаусса), теории электричества и магнетизма, геодезии (разработка метода наименьших квадратов) и многих разделов астрономии.

Еще при жизни Гаусс был удостоен почетного титула «принц математиков». Школьные учителя были так поражены его математическими и лингвистическими способностями, что обратились к герцогу Брауншвейгскому с просьбой о поддержке, и герцог дал деньги на продолжение обучения в школе и в Геттингенском университете (в 1795-1798). Степень доктора Гаусс получил в 1799 в университете Хельмштедта.

Первое же обширное сочинение Гаусса «Арифметические исследования» (опубл. в 1801) на многие годы определило последующее развитие двух важных разделов математики — теории чисел и высшей алгебры. Гаусс указал все числа, при которых построение правильного многоугольника с помощью циркуля и линейки возможно. Это пять так называемых гауссовых простых чисел: 3, 5, 17, 257 и 65337, а также умноженные на любую степень двойки произведения различных (не повторяющихся) гауссовых чисел. Гаусс предложил также явный способ построения с помощью циркуля и линейки правильного 17-угольника. Это событие Гаусс посчитал столь значительным, что отметил его в «Дневнике» и завещал высечь правильный 17-угольник на своем надгробии
.

С именем Гаусса также связана основная теорема алгебры, согласно которой число корней многочлена (действительных и комплексных) равно степени многочлена (при подсчете числа корней кратный корень учитывается столько раз, какова его степень).


Мировую известность обрел разработанный Гауссом метод определения эллиптической орбиты по трем наблюдениям. Применение этого метода к малой планете Церера позволило вновь найти ее на небе после того как она была утеряна вскоре после ее открытия астрономом Дж. Пиацци (1801). Не меньший успех сопутствовал применению метода Гаусса к другой малой планете, Палладе (1802).


В 1818 Гаусс одним из первых начинает размышлять над созданием неевклидовой геометрии, но от публикации полученных результатов воздерживается, опасаясь, по собственному признанию, «криков беотийцев» (т. е. возражений и насмешек невежд).

 
Copyright 2016. All rights reserved.
Назад к содержимому | Назад к главному меню