Математическая логика - математика и искусство

Перейти к контенту

Главное меню:

Математическая логика

Другие разделы

МАТЕМАТИЧЕСКАЯ ЛОГИКА, дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике.

Важную роль в математической логике играют понятия дедуктивной теории и исчисления. Исчислением называется совокупность правил вывода, позволяющих считать некоторые формулы выводимыми. Правила вывода подразделяются на два класса. Одни из них непосредственно квалифицируют некоторые формулы как выводимые. Такие правила вывода принято называть аксиомами. Другие же позволяют считать выводимыми формулы , синтаксически связанные некоторым заранее определённым способом с конечными наборами  выводимых формул. Широко применяемым правилом второго типа является правило modus ponens: если выводимы формулы  и , то выводима и формула .

Отношение исчислений к семантике выражается понятиями семантической пригодности и семантической полноты исчисления. Исчисление И называется семантически пригодным для языка Я, если любая выводимая в И формула языка Я является верной. Аналогично, исчисление И называется семантически полным в языке Я, если любая верная формула языка Я выводима в И.


Математическая логика изучает логические связи и отношения, лежащие в основе логического (дедуктивного) вывода, с использованием языка математики.


Многие из рассматриваемых в математической логике языков обладают семантически полными и семантически пригодными исчислениями. В частности, известен результат К. Гёделя о том, что так называемое классическое исчисление предикатов является семантически полным и семантически пригодным для языка классической логики предикатов первого порядка. С другой стороны, имеется немало языков, для которых построение семантически полного и семантически пригодного исчисления невозможно. В этой области классическим результатом является теорема Гёделя о неполноте, утверждающая невозможность семантически полного и семантически пригодного исчисления для языка формальной арифметики.


Стоит отметить, что на практике множество элементарных логических операций является обязательной частью набора инструкций всех современных микропроцессоров и соответственно входит в языки программирования. Это является одним из важнейших практических приложений методов математической логики, изучаемых в современных учебниках информатики.


Разделы математической логики

  • Алгебра логики

  • Логика высказываний

  • Теория доказательств

  • Теория моделей

Логика высказываний (или пропозициональная логика от англ. propositional logic, или исчисление высказываний) — это формальная теория, основным объектом которой служит понятие логического высказывания. С точки зрения выразительности, её можно охарактеризовать как классическую логику нулевого порядка.

Несмотря на свою важность и широкую сферу применения, логика высказываний является простейшей логикой и имеет очень ограниченные средства для исследования суждений

Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными.

Базовыми элементами, которыми оперирует алгебра логики, являются высказывания. Высказывания строятся над множеством
, над элементами которого определены три операции:

  • отрицание (унарная операция),

  • конъюнкция (бинарная),

  • дизъюнкция (бинарная),

а также константы — логический ноль 0 и логическая единица 1.

Теория вероятности — раздел математики, изучающий случайные события их свойства и операции над ними.

В теории вероятностей изучаются, те случайные события, которые могут быть воспроизведены в одних и тех же условиях и обладающие следующим свойством: в результате эксперимента, при условии S событие A может произойти с определенной вероятность p.


Основными понятиями теории вероятности являются: событие, вероятность, случайное событие, случайное явление, математическое ожидание, дисперсия, функция распределения, вероятностное пространство.


Как наука теория вероятностей возникает в середине 17 века. Первые работы появляются, в связи с подсчетом вероятностей в азартных играх. Исследуя прогнозирование выигрыша при бросании костей,
Блез Паскаль и Пьер Ферма, в своей переписке 1654 года, открыли первые вероятностные закономерности. В частности в этой переписки они пришли к понятию математическое ожидание и теоремам умножения и сложения вероятностей. В 1657 году эти результаты были приведены в книге Х. Гюйгенса «О расчетах в азартных играх», которая является первым трактатом по теории вероятностей.

Больших успехов в теории вероятностей достиг
Яков Бернулли: он установил закон больших чисел в простейшем случае, сформулировал многие понятия современной теории вероятностей. Им была написана монография по теории вероятностей, которая была издана посмертно в 1713 году, под названием «Искусство предположений».

В первой половине 19 века теория вероятностей начинает применяться в теории ошибок наблюдений. В это время были доказаны
теорема Муавра — Лапласа (1812) и теорема Пуассона (1837), являющиеся первыми предельными теоремами. Лаплас расширил и систематизировал математические основы теории вероятностей. Гаусс и Лежандр разработали метод наименьших квадратов.

Во второй половине 19 века большинство открытий в теории вероятности были сделаны российскими учеными
П. Л. Чебышёвым и его учениками А. М. Ляпуновым и А.А Марковым. В 1867 году Чебышёв сформулировал и достаточно просто доказал закон больших чисел при весьма общих условиях. В 1887 он же впервые сформулировал и предложил метод решения центральной предельной теоремы для сумм независимых случайных величин. В1901 году эта теорема была доказана Ляпуновым при более общих условиях. Марков в 1907 году впервые рассмотрел схему испытаний связанных в цеп, тем самым, положив основу теории Марковских цепей. Так же он внес большой вклад в исследования, касающиеся теории больших чисел и центральной предельной теоремы.

В начале 20 века происходит расширение круга применения теории вероятностей, создаются системы строго математического обоснования и новые методы теории вероятностей. В этот период благодаря трудам
Андрея Николаевича Колмогорова теории вероятностей приобретает современный вид.

В 1926 году, будучи аспирантом, Колмогоров получает необходимые и достаточные условия, при которых имеет место закон больших чисел. В 1933 в своей работе «Основные понятия теории вероятностей» Колмогоров вводит аксиоматику теории вероятностей, которая общепризнанна наилучшей.


Математический аппарат теории вероятности широко используется в науке и технике. В частности в астрономии для расчета орбит комет используется метод наименьших квадратов. В медицине при оценке эффективности методов лечения так же используется теория вероятности.


/БДЭ Математика/


Дедукция

Помните, Шерлок Холмс постоянно твердил о своих дедуктивных способностях? Так что  же такое дедукция?

ДЕДУКЦИЯ (лат. deductio - выведение) - такая форма мышления, когда новая мысль выводится чисто логическим путем из предшествующих мыслей. Такая последовательность мыслей называется выводом, а каждый компонент этого вывода является либо ранее доказанной мыслью, либо аксиомой, либо гипотезой. Последняя мысль данного вывода называется заключением.

Дедуктивное умозаключение, являющееся предметом традиционной логики, применяется нами всякий раз, когда требуется рассмотреть какое - либо явление на основании уже известного нам общего положения и вывести в отношении этого явления необходимое заключение. Нам известен, например, следующий конкретный факт - “данная плоскость пересекает шар” и общее правило относительно всех плоскостей, пересекающих шар, -“всякое сечение шара плоскостью есть круг”. Применяя это общее правило к конкретному факту, каждый правильно мыслящий человек необходимо придет к одному и тому же выводу: “значит данная плоскость есть круг”.


Структура дедуктивного умозаключения и принудительный характер его правил
отобразили самое распространенные отношения между предметами материального мира: отношения рода, вида и особи, т. е. общего, частного и единичного: то, что присуще всем видам данного рода, то присуще и любому виду; то, что присуще всем особям рода, то присуще и каждой особи.

Впервые теория дедукции была обстоятельно разработана Аристотелем. Он выяснил требования, которым должны отвечать отдельные мысли, входящие в состав дедуктивного умозаключения, определил значение терминов и раскрыл правила некоторых видов дедуктивных умозаключений. Положительной стороной аристотелевского учения о дедукции является то ,что в нем отобразились реальные закономерности объективного мира.

Под термином “дедукция” в узком смысле слова понимают также следующее:
1)  Метод исследования, заключающийся в следующем: для того, чтобы
получить новое знание о предмете или группе однородных предметов, надо, во - первых найти ближайший род, в который входят эти предметы, и, во - вторых, применить к ним соответствующий закон, присущий всему данному роду предметов. Дедуктивный метод играет огромную роль в математике. Известно, что все  теоремы выводятся логическим путем с помощью дедукции из небольшого конечного числа исходных начал,  называемых аксиомами.
2) Форма изложения материала в книге, лекции, докладе, беседе, когда от общих положений, правил, законов идут к менее общим положениям, правилам, законам.


Дедуктивную теорию принято считать заданной в том случае, если:

  • Задан алфавит, то есть множество, и правила образования выражений в этом алфавите.

  • Заданы правила образования формул.

  • Выделено подмножество теорем, которые доказывают формулу.


Существует несколько способов построения множества теорем:
1.Задание аксиом и правил вывода
Во множестве формул выделяется подмножество аксиом, после чего задается конечное число правил вывода. Правило вывода — это правила, с помощью которых из аксиом и ранее выведенных теорем можно получить новые теоремы. В число теорем входят все аксиомы.
Этот способ позволяет задавать формальные аксиоматические теории.
2.Задание только аксиом
В этом случае правила вывода считаются общеизвестными, поэтому задаются только аксиомы. Поэтому при таком построении теорем, говорят, что полуформальная аксиоматическая теория.
3.Задание только правил вывода
Данный способ построения теорем основывается на задании только правил вывода, поскольку множество аксиом пусто. Исходя из этого, теория, заданная таким образом, являет собой частный случай формальной теории. Позднее эта разновидность стала называться теорией естественного вывода.


К основным свойства дедуктивных теорий относятся:
1. Противоречивость
Противоречивой называется теория, в которой множество теорем покрывает всё множество формул.

2. Полнота
Полной называется теория, в которой для любой формулы F выводима либо сама F, либо ее отрицание -F.
3. Независимость аксиом
Когда отдельную аксиому теории нельзя вывести из остальных аксиом, то ее называют независимой.  Система аксиом называется независимой только в том случае, если каждая аксиома в ней независима.
4. Разрешимость
Когда в теории существует эффективный алгоритм, позволяющий определить количество шагов, доказывающих теорему, теория называется разрешимой.
К примеру, логика высказываний, логика первого порядка (исчисление предикатов), формальная арифметика (теория S).


 
Copyright 2016. All rights reserved.
Назад к содержимому | Назад к главному меню