Математика - математика и искусство

Перейти к контенту

Главное меню:

Математика

Математика

Математика есть такая наука, которая показывает, как из знаемых количеств находить другие, нам еще не изветсные.
/Д.С. Аничков/

Холодные числа, внешне сухие формулы математики полны внутренней красоты и жара  сконцентрированной в них мысли.
/А.Д.Александров/

Главной целью всех исследований внешнего мира должно быть открытие рационального порядка и гармонии, которые Бог ниспослал миру и открыл нам на языке математики.
/Иоганн Кеплер/

Аллегория математки

Зародилась математика в древнейшие времена. В те доисторические времена человек активно осваивал окружающий мир, накапливал фактический материала и преумножал жизненный опыт. Долгое время счет у древних людей был вещественным, то есть осуществлялся с помощью палочек, камней, пальцев и прочего. Постепенно к первобытному человеку пришло понимание того, что число можно отделить от его конкретного представителя. Древние люди сумели понять, что два яблока и два камня, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека. Так постепенно сформировалось понятие о натуральных числах, а к концу VII V вв. до н. э. и другие основные постулаты математики.

Бурное развитие математической науки обусловлено потребностями хозяйственной жизни человека. Земледелие, ремесло, обмен, торговля, налоги, обеспечение продовольствием, создание армии, измерение площадей земельных владений, объемов сосудов и многое другое заставляло людей заниматься счетом и вычислением. Со временем накопленные знания были приведены в четкую систему, благодаря чему человек смог вычленить особые понятия, методы и способы решения трудных задач, которые впоследствии легли в основу современной математической науки.

Еще
в глубокой древности задолго до наступления нашей эры были сформулированы три основных понятия математики: число, величина и геометрическая фигура. В процессе тщательного счета и упорядочивания убитых на охоте зверей, сделанных горшков в мастерской, собранного урожая, возникло понятие натурального числа, как количественного, так и порядкового. В результате сравнения масс и объемов разнообразных сосудов и предметов человек пришел к пониманию понятия величина. В следствие изучения форм изделий и предметов, зданий и земельных участков и т.д. люди сформировали понятие геометрической фигуры, являющейся частью геометрического (буквально означает — измерение земли) пространства.ормированные абстрактные понятия были введены в арифметические действия над натуральными числами. Спустя некоторое время была установлена связь между натуральными числами и величинами, в результате чего появились дробные числа. Они получались в случае, когда результат измерений не выражался натуральным числом. Постепенно путем наблюдений и простейших логических рассуждений, люди пришли к простым, но гениальным по своей сути формулам для вычисления геометрических величин — длин, площадей, объемов. Из этого следует, что в это время арифметика и геометрия считались частями одного целого.



Цифры – условные знаки для обозначения чисел

Первые цифры появились у египтян и вавилонян. У ряда народов (древние греки, финикияне, евреи, сирийцы) цифрами служили буквы алфавита, аналогичная система применялась и в России до 16 в. В средние века в Европе пользовались системой римских цифр (I, II, III, IV, V, VI и т. д.), основанной на употреблении особых знаков для десятичных разрядов I = 1, X = 10, С = 100, М = 1000 и их половин V = 5, L = 50, D = 500.


Современные цифры (арабские) перенесены в Европу арабами в 13 в. (по-видимому, из Индии) и получили широкое распространение со 2-й пол. 15 в. В узком смысле слова цифрами называются знаки: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.


Элементарная математика

С VI- XVIII веках до нашей эры длился полный уникальных открытий период в развитии математической науки. После нескольких веков накопления эмпирического материала, сформированного в разнообразные приемы и методы арифметических вычислений, наступает второй период развития математики, известный как период элементарной математики. К этому времени математика становится самостоятельной наукой, с целым рядом своеобразных понятий и методов. Теперь начинается систематическое и логически последовательное посторенние основ математической науки.

Наиболее ценный вклад в становление математики внесли ученые Древней Греции. Главным достижением математической мысли того времени является становление и развитие
понятия о доказательстве. В данный период развития цивилизации ученые стремились к четкому, последовательному и логическому построению своих мыслей. Древние греки строго выстраивали свои мысли и высказывания, в результате чего переход от одного смыслового звена к следующему не допускал места сомнениям, был неоспорим и заставлял всех принимать его без спора. Такой метод логических рассуждений получил название дедуктивного.

Дошедшие до нас тексты древнегреческого ученого Фалеса из Милета, позволяют считать его первым философом, который использовал в математике дедуктивный метод и доказательства.
Именно  Фалес доказал равенство углов при основании равнобедренного треугольника, равенство вертикальных углов, один из признаков равенства треугольников, равенство частей, на которые диаметр разбивает круг, и другие геометрические утверждения.

Метод логического доказательства математических утверждений Фалеса был всесторонне развит и усовершенствован учеными пифагорейцами в конце VI в. — середине V в. до н. э. Ученые пифагорейской школы доказали математическое утверждение, известное нам как теорема Пифогора.

Именно пифагорейцы предприняли первую попытку к сведению геометрии и алгебры к арифметике. По их мнению, «все есть число», при этом под словом «число» ученые пифагорейской школы подразумевали лишь натуральные числа. Эта предположение было опровергнуто самими же пифагорейцами. Новое открытие стало поворотным пунктом в развитии математической науки. Открытие заключалось в том, что пифагорейцы доказали несоизмеримость диагонали квадрата с его стороной. Доказательство, основанное на теореме Пифагора, обнаружило несостоятельность и бессмысленность попыток свести геометрию к натуральным числам. Проанализировав доказательство, были сформированы основные положения Теории чисел (четности и нечетности простых чисел, разложения чисел на простые множители, свойств взаимно простых чисел и т. д.).

Следующим этапом развития элементарной математики явилась попытка греческих ученых обосновать математику, оперируя геометрическими понятиями. С этого момента начинается развитие геометрической алгебры. Теперь, к примеру, сложение величин объясняется как сложение отрезков, а умножение как результат построения прямоугольника с заданными сторонами. Надо сказать, что при этом, древнегреческие ученые говорили не о равенстве отрезков, а о равенстве длин отрезков. Геометрический подход к алгебре сохранился и по сей день в некоторых терминах, к примеру, квадрат числа, куб числа, геометрическое среднее, геометрическая прогрессия и т. д.

Вклад древнегреческих математиков трудно переоценить. Благодаря их трудам математическая наука продвинулась очень далеко. Именно древние греки классифицировали квадратичные иррациональности, открыли все виды правильных многогранников, вывели основные формулы для определения объемов тел, изучили кривые линии — эллипс, гиперболу, параболу, спирали.

В становлении математики этого периода главную роль сыграла книга Евклида «Начала». Выдающийся труд представлял собой синтез и систематизацию основных достижений математической науки. Книга Евклида на протяжении многих веков служила главным источинком знаний, была уникальным образцом строгого, логически стройного изложения математических доказательств. «Начала» подвели промежуточный итог в развитии математических идей.

Элементарная математика Древней Греции не знала отрицательных чисел и нуля, иррациональных чисел и буквенного исчисления. Они появятся лишь в III веке нашей эры в трудах александрийского математика Диофанта.

Теперь центр математической науки перемещается на Восток, в Индию и арабские страны, а также в Китай.

В конце рассматриваемого периода были введены отрицательные числа и ноль, развита тригонометрия, создана новая область математики — алгебра, как буквенное исчисление. Таким образом, период элементарной математики завершается. Теперь направление математических исследований изменяется в сторону математических величин.

XVII — XVIII века — третий период развития математической науки. Начало века было ознаменовано выдающимися математическими исследованиями Рене Декарта. В своих трудах Декарт исправляет ошибочные представления античных математиков и вновь возвращает числу алгебраическое понимание взамен геометрического. К тому же Декарт показывает новый способ перевода геометрических предложений на алгебраический язык. Это осуществлялось с помощью системы координат, которая впоследствии стала носить имя своего создателя. Благодаря декартовой системе координат эффективность математических исследований становится на порядок выше. Таким образом, появилась аналитическая геометрия. Кроме того, именно Рене Декарту принадлежит заслуга введения нового математического понятия переменной величины.

Переход от изучения постоянных величин к исследованию зависимостей между переменными величинами, позволили вступить на новую ступень науки — к математическому описанию движения и других сложных абстрактных процессов. поэтому третий период развития математики стали называть периодом математики переменных величин.

Выдающимся достижением рассматриваемого периода в становлении математической науки явилось введение нового обобщенного понятия функции. Введенное в конце XVII в. немецким математиком и философом Г. В. Лейбницем, понятие функции воплотило в себе общефилософскую идею о всеобщей взаимосвязи явлений материального мира.

Понятия переменной и функции есть не что иное, как абстракции конкретных переменных величин таких, как координата, скорость, ускорение и тому подобные, и конкретных зависимостей между ними, к примеру, закон свободного падения. Результатом углубленного изучения общих свойств зависимостей между переменными величинами стало создание
математического анализа. XVIII век по праву называют веком анализа в математике. Благодаря обмену идеями, происходившему в процессе взаимодействия, была сформирована математическая физика.

В области геометрии и механики конца XVII в. было также сделано немало важных открытий. Выдающийся английский физик и математик Исаак Ньютон создал основу
дифференциального и интегрального исчисления. Это открытие Ньютон совершил одновременно с Г.В. Лейбницем. Анализ и механика развивались в тесном взаимодействии, однако впервые эти две области научного знания объединил Эйлер.  Теперь механика стала прикладным разделом анализа.

Значительные успехи в этой области были достигнуты в XVIII-XIX столетиях. К этому времени математики научились составлять и решать дифференциальные уравнения и уравнения в частных производных, в которых соединялись многие вопросы математической физики. Так было создано
вариационное исчисление, которое помогало решать невозможные для первоначальных методов математического анализа задачи.

На рубеже XVIII — XIXвв в свет выходят многочисленные специализированные математические журналы.  Значительно увеличивается количество научно-популярной литературы.
В это же время возникает и развивается теория вероятностей.



В современный период развития математической науки, впитавший в себя достижения предыдущих эпох, было сделано много невероятных открытий, опровергнуты ошибочные убеждения, созданы и развиты новые теории.

Предпосылки этому можно найти еще в XVII веке, когда знаменитый математик Лейбниц поставил новые задачи математической науки.
Теперь объектами исследования математики становятся все относительное и абсолютное, реальное и невозможное, похожее и различное, отношения единицы и многого, части и целого. В связи с этим в математике появляется ряд существенно новых направлений.

Одним из самых выдающихся открытий того времени является построение так называемой
неевклидовой геометрии. Созданная великим русским математиком Н. И. Лобачевским новая геометрия стала своеобразным символом внутреннего развития математики. Теперь аксиомы рассматривают как гипотезы. К концу XIX века сложился ряд строгих требований к практической работе математиков, который сегодня составляет предмет математической логики.

Не менее важным этапом в развитии математической науки стало углубленное изучение геометрических пространств. Весомый вклад в развитие этой области внес Риман. Интенсивное изучение функциональных пространство позволило создать новый раздел математики —
функциональный анализ, в котором геометрические понятия и идеи используются для решения сложных задач математического анализа.

В области механики и математической физики разработана теория обыкновенных дифференциальных уравнений и дифференциальных уравнений с частичными производными и пр.

Развитие теории дифференциальных уравнений позволило перейти к исследованиям по топологии многообразий. На основе теории множеств и функционального анализа была построена
теория общих топологических пространств. В конце XIX века методы дифференциальных уравнений были дополнены методами теории вероятности для детального и углубленного изучения природы.

Направление алгебраических исследований изменяется в сторону общих алгебраических систем, теории групп, полей, колец. На стыке алгебры и геометрии возникает новая
теория непрерывных групп.

Новые методы анализа и алгебры, созданные в начале ХХ века, были использованы при создании и дальнейшем использовании ЭВМ. Таким образом, было найдено практическое применение результатов теоретико-математических исследований, а методы анализа и алгебры легли в основу нового раздела науки —
вычислительную математику.

В русском языке, а также в языках других народов названия всех чисел до миллиона составляются из 37 слов, обозначающих числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000.

На ранних ступенях развития общества люди почти не умели считать. Они различали совокупности двух и трех предметов; всякая совокупность, содержащая большее число предметов, объединялась в понятии «много».

Впервые отрицательные числа были узаконены в Китае в III веке, но  использовались лишь для исключительных случаев, так как считались бесмыссленными. Чуть позднее отрицательные числа стали использоваться в Индии для обозначения долгов. В Европе отрицательные числа появились благодаря Леонардо Пизанскому (Фибоначчи), который тоже ввёл его для решения финансовых задач с долгами  в 1202 году. До XIX века математики часто отбрасывали в своих вычислениях отрицательные числа.

Понятия «больше» и «меньше» наряду с понятием равенства возникли в связи со счетом предметов и необходимостью сравнивать различные величины. Понятиями неравенства пользовались уже древние греки. Например, Архимед (в III в. до н. э.), когда занимался вычислением длины окружности; ряд неравенств приводит Евклид в своем знаменитом трактате «Начала», а также папа Александрийский (в III в. н. э.) в своем «Математическом собрании».

Однако все эти рассуждения проводили словесно, опираясь в большинстве случаев на геометрическую терминологию. Современные знаки неравенств появились лишь в XVII — XVIII вв. Знаки «<» и «>» ввел английский математик Т. Гарриот (1560 — 1621), который был воспитанником Оксфордовского университета и первым алгебраистом XVII века. Томас Гарриот, кроме того, что был выдающимся математиком, был очень разносторонней личностью. Он составил ценные описания и карту исследованной им части Северной Америки, ныне именуемой Северной Каролиной (1586), и карту Луны, которую он наблюдал через зрительную трубу в одно время с Галилеем.


ВЫСШАЯ МАТЕМАТИКА, совокупность математических дисциплин, входящих в учебный план технических и некоторых других специальных учебных заведений; обычно в курс высшей математики включаются элементы аналитической геометрии, линейной алгебры, дифференциального исчисления, интегрального исчисления и дифференциальных уравнений.

 
Copyright 2016. All rights reserved.
Назад к содержимому | Назад к главному меню